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ABSTRACT 

We propose using the smart antenna principle as the basis of a new design for smart optical receivers in LADAR 
systems. This paper demonstrates the feasibility of designing a LADAR system with a receiver consisting of an array of 
photodetectors, which leads to field-of-view enhancement and beamforming by fusing streams of video information 
received from the detectors. As a proof of concept, we demonstrate this design by fusing several video information 
streams from different fields of view using our Mathworks Simulink® model. The fusion algorithm uses the fuzzy logic 
maximum operation on the data output from the cameras.  
Keywords: LADAR, beamforming, data fusion 

1. INTRODUCTION 
Smart receivers in RF wireless and free-space telecommunication use arrays of receivers combined with smart signal 
processing algorithms to enhance signal quality and calculate beamforming. Beamforming is a signal processing 
technique that increases the receiver’s ability to enhance the desired signal relative to interference and background noise. 
For example, free-space optical telecommunication smart receivers have been used recently for many applications such 
as indoor high-speed wireless communication1-5. In such systems, infrared (IR) signals offers several advantages over 
radio signals: (a) IR transmitters and receivers are capable of achieving higher bit rates at lower cost, (b) the IR spectral 
region has virtually unlimited bandwidth, and (c) IR transmission cannot be intercepted outside the room from which it 
originated, since IR radiation is blocked by walls and other opaque barriers. In IR telecommunication systems, three 
types of free-space optical receivers can be considered: (a) a single-element receiver consisting of an optical concentrator 
coupled to a single photodetector, (b) an angle-diversity receiver consisting of multiple receiving elements with different 
angles of detection6-8, and (c) an imaging angle-diversity receiver, which uses a single imaging lens coupled to an array 
of photodetectors6. Like optical telecommunication systems, laser radar (LADAR) systems use laser sources. LADAR 
systems scan and process the signal reflected from a target in order to create an image of the desired area.  
In digital free-space telecommunication, the laser is modulated on and off. The received bit is susceptible to dispersion, 
scattering, and aberration, from propagating through the atmosphere. At very high bit rates, dispersion limits the 
resolution between two successive bits.  Additionally, scattering and aberration limit the amount of light that can be 
collected by a photodetector. With high scattering and aberration, the intensity of the received signal is reduced, leading 
to poor signal-to-noise ratio and very high bit error rate. 
In LADAR systems, atmospheric dispersion can affect the pulse width (the laser radar time of flight), as well as the 
phase of the reflected beam, which leads to ambiguity in the range information. Noise and atmospheric turbulence reduce 
the fraction of the reflected light that is collected by the detector. This affects both the sampling rate (spatial resolution) 
and the A/D resolution (range resolution). Reflected or scattered light from the target cannot be collected by one 
detector, which leads to collection of only a portion of the field of view (FOV). In order to cover the entire scanned area, 
the use of multiple detectors is necessary. The data collected from each detector is processed by a circuit to extract the 
range information. The range information from all the circuits is fused together according to a fusion algorithm in order 
to enhance both spatial and range resolution.  
We propose, for the first time, to use an array of photodetectors to detect the reflected signal. Specifically, we propose a 
LADAR system in which the collected information from different views of the target is focused separately onto a 
photodetector array, leading to a large overall FOV of the target compared to single-detector information collection.  
In the single-element receiver mentioned above, the desired signal, combined with unwanted signals such as noise, 
interference, and delayed components, is received by a single detector. The drawbacks of this receiver can be overcome 
if an angle-diversity receiver is used. This receiver uses multiple receiving elements pointed in different directions, so 
the signals received by the various elements are amplified separately. The advantages of using this receiver are: (a) high 
optical gain with a wide FOV, and (b) low noise, low interference, and low multipath distortion detection, since these 
unwanted signals are in many cases received from different directions than the desired signal. The angle diversity 
elements require a separate optical concentrator for each receiving element, which makes the device expensive and 
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bulky; therefore, Yun and Kavehrad proposed the fly-eye receiver6. This receiver consists of a lens focusing the received 
light onto an array of photodetectors, thereby separating signals that arrive from different directions. This design has two 
advantages: (a) all photodetectors share one concentrator, leading to reduced size and cost, and (b) all the photodetectors 
can be in a single array, which makes having a large number of receiving elements feasible.  
As a proof of concept, this design was modeled using the Mathworks Simulink® software to show the feasibility of the 
proposed idea.  The fusion algorithm used in this design uses the fuzzy logic maximum operation on the data output from 
the camera channels.  

 
2. EXPERIMENT 

Figure 1 shows an experimental setup for a conventional LADAR system. A laser source is amplitude modulated, then 
sent to an X-Y scanner to scan a target. The return signal from the target is captured by a photodetector, whereby the 
modulated signal is recovered, then electrically amplified. The amplified signal is then homodyne detected by mixing it 
with a reference signal from the laser modulator. The output signal from the mixer is captured by a line-scan frame 
grabber, which is triggered and synchronized by the X-Y triggers from the scanner driver. It is the output of the frame 
grabber that is displayed. In this setup, having one detector collecting the reflected light from the target was not 
sufficient to capture the entire FOV. Therefore, in order to enhance the field of view, we propose using several 
photodetectors.  
 

Figure 1. The experimental setup for a conventional LADAR system. 
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We initially tested this design by moving the photodetector from left to right and capturing the data from each view. An 
evenly spaced array of smooth circular metal pins (a pet comb), as shown in Figure 2, was used as a target for our 
LADAR system. The fuzzy logic maximum algorithm was used to fuse these data.  
 
 

 
Figure 3 shows the data collected from: (A) the left side of the target, (B) the center of the target, (C) the right side of the 
target, and (D) the fused image of all three. The image frame includes the data acquired by the scanner for both the 
forward and the reverse scan directions. The collected images do not show equally spaced pins due to the sinusoidal 
motion of the scanner, which can be compensated for optically or electronically 9-11. The fusion was achieved using the 
MATLAB® fuzzy logic MAX operation (maximum value) on all the collected input frames. It is evident from these 
results that the fused image shows all the pins in the target, indicating the fidelity of our approach in field-of-view 
enhancement. This experiment was performed using the setup described in Figure 1.  
 

 
 
 

 

Figure 2.  A pet comb used as a target. 
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Figure 3. Collected scanned data from a comb: (A) the left side of the target, (B) the center of 
the target, (C) the right side of the target, and (D) the fused image of all three. 
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For clarification, the intensity plots of one row of these images are shown in Figure 4.  

 

The alternative proposed experimental setup with several photodetectors is shown in Figure 5. In this setup, instead of 
one detector, an array of photodetectors is used (for simplicity, this figure shows just two photodetectors). The outputs 
from the detectors are amplified and homodyne detected. The output signals are then synchronized and amplified via the 
video amplifiers. Ultimately, these signals are digitized and collected by computer software to be fused and displayed.  

 

 

Figure 4. The plots of one row of Figure 3 images. 
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Figure 5. The alternative proposed experimental setup with two photodetectors. 
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3. SIMULATION 
For proof of concept and demonstration of real-time performance of our algorithm, we simulated the experimental setup 
using our Mathworks Simulink® model. This model is shown in Figure 6.  
 

 
We simulated scanning and data collection via several photodetectors by collecting video data from a webcam in which 
each frame is 240 × 320 pixels. Since we cannot use multiple webcams (because each webcam is a separate system with 
its own scanner), the video information was distributed equally to five channels. Each channel’s data was digitally 
filtered by a spatially translated Gaussian filter in order to simulate the situation of having several detectors, each of 
which collects a portion of the scanned FOV. The respective Gaussian translations in these channels were 0, 50, 100, -50, 
and -100 pixels. The Gaussian translation can be explained as follows: (a) the 0 position corresponds to the center 
detector, (b) the 50 and 100 positions correspond to detectors on the right and the extreme right, respectively, and (c) the 
-50 and -100 positions correspond to detectors on the left and the extreme left, respectively. The corresponding video 
frames for these images are shown in Figure 7 (A, B, C, D and E). Figure 7(A) represents the case in which the optics 
FOV is around the center of the scene. Figure 7 (B and C) shows the cases in which the optics FOVs are the right and the 
extreme right part of the scene, respectively. Figure 7 (D and E) shows the left and extreme left FOVs of the scene, 
respectively, and Figure 7 (F) shows the fused video frame using the fuzzy logic MAX operation.       
 

 
 

 

 

 

 

 

 

 

 

Figure 6. Simulink model of real-time performance of the fusion algorithm. 
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4. CONCLUSION 
We proposed a LADAR system in which the collected information from different views of the target is focused 
separately onto an array of photodetectors, leading to a large FOV of the target compared to single-detector information 
collection. We demonstrated this LADAR design by collecting the images from a webcam and sending them to a 
Mathworks Simulink® model to be fused. The fusion algorithm used in this design chooses the maximum value from 
camera output data.  
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E F

Figure 7. Simulation results, different FOVs: (A) center, (B) right, (C) extreme right, (D) 
left, (E) extreme left, and (F) the fused video frame using the MAX operation. 
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